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Abstract. The poor man’s scaling is extended to higher order by the use of the open-shell Rayleigh-
Schrödinger perturbation theory. A generalized Kondo-type model with the SU(n)×SU(m) symmetry is
proposed and renormalized to the third order. It is shown that the model has both local Fermi-liquid and
non-Fermi-liquid fixed points, and that the latter becomes unstable in the special case of n = m = 2.
Possible relevance of the model to the newly found phase IV in CexLa1−xB6 is discussed.
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1 Introduction

In the renormalization theory one seeks a small pa-
rameter to control perturbative calculation of physical
quantities. In the Kondo model, however, one encounters
unmanageable divergence for physical quantities because
the fixed point of the model corresponds to the strong cou-
pling limit. Thus the numerical renormalization group has
proved useful for quantitative study of the Kondo effect
[1]. On the other hand, the multi-channel Kondo model
has a nontrivial fixed point at the exchange interaction Jc
which becomes small as the number of channels increases.
Then the model has a controlled perturbation expansion
from the limit of large degeneracy of conduction bands
[2,3]. It is highly desired to have a simple scheme to per-
form perturbative renormalization to any desired order.
This paper proposes an extension of the poor man’s scal-
ing to higher orders by the use of the Rayleigh-Schrödinger
perturbation theory together with the open-shell formal-
ism.

Another motivation of the present study is due to ob-
servation of a strange phase (called IV) in CexLa1−xB6

[4–6]. The magnetic susceptibility shows a cusp on en-
tering the phase IV from the paramagnetic phase with
decreasing temperature. This suggests that the Néel state
is present here. In contrast to the phase III which has
both antiferromagnetic and quadrupole orders, however,
the phase IV has a very small magnetic anisotropy and
almost no magneto resistance. We recognize the impor-
tance of the orbital Kondo effect which is active even in
the presence of a spin ordering. In order to inspect the im-
portance one needs to know how the intersite interaction
and the on-site orbital and spin Kondo effects compete.
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As the first step toward this direction, we study the sim-
plest impurity model that displays both the orbital and
spin Kondo effects with special attention to the combined
spin and orbital symmetry of the 4f shell.

In conventional perturbation theory for Kondo-type
models one introduces fictitious fermions or bosons to
represent the localized spin [7–9]. Then one computes
some lower-order Feynman diagrams in order to apply
the multiplicative renormalization [10,11]. However, it is
known that there is no linked-cluster expansion in this
pseudo-particle theory [12]. Thus in higher-order it is dif-
ficult to accomplish proper counting of perturbation pro-
cesses. To overcome the difficulty several methods have
been proposed. Among them is the resolvent formalism
or the Brillouin-Wigner-type perturbation theory, which
does not rely on the linked-cluster property [13–16]. An-
other elegant way is to introduce a particular value of the
imaginary chemical potential for the fictitious fermions.
Then unphysical contributions cancel each other [17,18].
We note that the latter method works only for the mag-
netic impurity with spin 1/2.

In doing perturbative renormalization of the Kondo
model, the “poor man’s scaling” of Anderson [19] pro-
vides the simplest framework for practical computa-
tion. If one wants to proceed to higher-order renor-
malization, however, extention of the scaling method
is not straightforward [20,21]. In this paper, we pro-
pose an alternative approach to extend the poor man’s
scaling to arbitrary high orders. In contrast to the
original idea of using the invariance property of the
t-matrix, the present theory considers the effective
Hamiltonian which gives the same energy spectrum as
the original one at each order of renormalization. In
deriving the effective Hamiltonian we use the Rayleigh-
Schrödinger perturbation theory in the open-shell formal-
ism, which is popular in quantum chemistry and nuclear
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physics [22,23]. We demonstrate the usefulness of our
scheme by computing the third-order term in the renor-
malization group.

The organization of the paper is as follows: in the next
section we review the effective Hamiltonian formalism by
the use of the Rayleigh-Schrödinger perturbation theory.
Section 3 performs renormalization to third order explic-
itly for the multi-channel Kondo model. We explain the
notion of the folded diagram which is very convenient to
exploit the linked cluster property. These two sections do
not give new results to the Kondo problem itself, but ex-
plains the formalism and demonstrates its simplicity. In
Section 4 we introduce an SU(n)×SU(m) model where
n denotes the number of spin degrees of freedom, and
m does the orbital one. This model is different from the
SU(n)×SU(m) Anderson model already discussed in the
literature [24,25]. Our model includes both the Fermi-
liquid and non-Fermi-liquid fixed points, and reduces to
the multi-channel Kondo model in a special case. The
renormalization to the third order is performed for general
n and m by the use of the Lie algebra. We give detailed
analysis of each fixed point and the renormalization flow.
The final section summarizes the paper and describes pos-
sible further development.

2 Effective Hamiltonian in the model space

2.1 Projection to the model space

As a preliminary to perturbative renormalization we intro-
duce the projection operator P to the model space M . We
divide the Hamiltonian H = H0 +V such that the unper-
turbed part H0 commutes with P . In many cases we are
interested only in certain lower part of the full spectrum
of H. The effective Hamiltonian Heff is designed to give
the identical spectrum in the model space as that of H.
Namely if ψi is an eigenfunction of H with the eigenvalue
Ei, we require

HeffPψi = EiPψi. (1)

To construct Heff it is necessary to introduce the wave
operator Ω which reproduces ψi from Pψi, namely ψi =
ΩPψi. Note that the operator product ΩP is not an iden-
tity operator since P does not have an inverse. We empha-
size that the above reproduction is possible only because
ψi is an eigenfunction of H.

In the Brillouin-Wigner perturbation theory the wave
operator can be derived in the simple form [22]:

Ω(Ei) =
∞∑
n=0

(
1

Ei −H0
QV

)n
, (2)

where Q = 1 − P is the projection operator to the
space complementary to the model space. In spite of its
simple appearance, the energy dependence of the wave
operator makes it rather inconvenient for term-by-term
perturbation theory in higher orders. On the other hand,
the Rayleigh-Schrödinger perturbation theory is able to

derive Ω and hence Heff in a form which involves only
eigenenergies of H0 and is free from the unknown energy
Ei. We write the Schrödinger equation in the two forms:

(E −H0)ψ = Eψ −H0ΩPψ = V ΩPψ, (3)

Ω(E −H0)Pψ = Eψ −ΩH0Pψ = ΩPV ΩPψ, (4)

where the index i to specify an eigenstate is omitted. The
latter equation is obtained by application of P on both
sides of equation (3) and further application of Ω. Sub-
tracting equation (4) from equation (3), we obtain

[Ω,H0]Pψ = (1−ΩP )V ΩPψ. (5)

We make the power series expansion:

Ω = Ω0 +Ω1 +Ω2 + . . . ,

where Ωn denotes the O(V n) contribution with Ω0 = 1.
Comparing the terms with the same order of magnitudes
on both sides of equation (5), we obtain

[Ωn,H0] = QVΩn−1 −
n−1∑
j=1

ΩjPV Ωn−j−1. (6)

The effective Hamiltonian is accordingly expanded as

Heff = P (H0 + V )P +H2 +H3 + . . . , (7)

with Hn = PV Ωn−1P for n ≥ 2.
Matrix elements of some lower-order terms are explic-

itly given by

〈a|H2|b〉 = 〈a|V (εb −H0)−1QV |b〉, (8)

〈a|H3|b〉 = 〈a|V
1

εb −H0
QV

1

εb −H0
QV |b〉

−
∑
c

〈a|V
1

εb −H0

1

εc −H0
QV |c〉〈c|V |b〉, (9)

where states such as |a〉, |b〉 and |c〉 belong to the model
space with H0|b〉 = εb|b〉 etc. We note that the effective
Hamiltonian is not Hermite. It is possible to convert it to
a Hermitian operator by a similarity transformation [23].

2.2 Linked cluster property

In the Rayleigh-Schrödinger perturbation theory, two
kinds of terms appear in Hn with n ≥ 3; the first kind
takes the simple form [(εb − H0)−1QV ]n and the other
kind of terms have less simple form and originate from the
second term in equation (6). The latter terms in fact play
an important role in leading to the linked-cluster expan-
sion. Namely, among all processes appearing as a result
of Wick decomposition, unlinked diagrams are cancelled
by the second kind of terms [22]. Here the linked or un-
linked diagrams have the same meanings as those in the
Feynman diagram method.

The Rayleigh-Schrödinger theory has two cases to
treat: the simpler one is the closed shell case where a large
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energy gap separates the occupied and unoccupied fermion
orbitals. The other one is the open shell case where in addi-
tion to the stable core orbitals, a part of nearly degenerate
orbitals are occupied. The latter orbitals are called valence
orbitals, and constitute the model space. The essential
point of applying the open-shell formalism to Kondo-type
models is to regard the local electron as belonging to the
set of valence orbitals. In order to utilize the linked-cluster
property of the perturbation theory, we remove the restric-
tion that the number of local electrons be unity at any
stage of intermediate states. The final form of the effec-
tive Hamiltonian conserves the number of local electrons
in each order of perturbation. Hence in the model space
with one and only one local electron which obeys either
the Fermi or Bose statistics, one can reproduce the actual
situation in the Kondo-like impurity model with the local
number constraint. Note that this reproduction is possi-
ble because we are working with the canonical ensemble
instead of the grand canonical one.

In order to deal with the energy denominators of terms
such as the second term in equation (9), the concept of the
“folded diagram” is useful [22,23]. Namely each time the
projection operator P appears in the expansion, one draws
a diagram where the direction of propagation is reversed.
Then the energy denominator is associated with difference
of left-going energies and the right-going ones just as in
the first term of equation (9). By comparing the energy
denominators given by the second term of equation (9),
and those given by the rule for the folded diagrams, one
can confirm that both give identical results.

3 Renormalization of the multi-channel
Kondo model

As the simplest application of the present method, we con-
sider the multi-channel Kondo model defined by

HK =
∑
kσ

n∑
l=1

ε kc
†
klσc klσ + J S · s (10)

with channel index l. Here S is the localized spin with
magnitude 1/2 and

s =
1

2N

∑
kk′

∑
αβ

n∑
l=1

c†klα σαβc klβ , (11)

with N being the number of k-states and σ the Pauli
matrix. It is known that the fixed point of the model gives
the non-Fermi liquid for n ≥ 2 [2]. In order to perform
renormalization explicitly we assume the constant density
of states for n conduction bands each of which per spin is
given by

ρc(ε) = (2D)−1

for |ε| < D and zero otherwise. The model space consists of
the local spin and such conduction electrons whose energy
ε is within the range [−D+ |dD|, D−|dD|] where dD(< 0)
is the infinitesimal change of the cut-off energy. In order to

( a ) ( b )

Fig. 1. Scattering processes in second order. The solid line
shows a conduction-electron state, while the dashed line the
local electron. The projection operator Q requires the inter-
mediate conduction-electron states to have energies near the
band edges.

simplify the diagrams we define the vacuum as the Fermi
sea of non-interacting conduction electrons, and work with
the particle-hole picture for excitations.

In the lowest order, we consider the two processes
shown in Figure 1. We associate the energy ±D to the
intermediate conduction states which belong to the or-
thogonal subspace projected by Q. As is clear from the
direct calculation, the effective exchange interaction de-
pends on the energy of conduction electrons in contrast to
the bare interaction. We replace this energy dependent in-
teraction by a constant, and continue the renormalization
with the same form of the effective Hamiltonian. Namely
it is assumed that the dimensionless effective interaction
g(D) with a given cut-off energy D is related to another
with a different cut-off energyD′ by a multiplicative factor
z(g,D′/D). We require

g(D′) = z(g,D′/D)g(D). (12)

This multiplicative property can be expressed equivalently
in the differential form:

∂g

∂l
= β(g), (13)

where l = lnD and the beta-function in the right-hand
side does not depend explicitly on l. This scheme is called
the logarithmic approximation in the literature [26]. In
the effective Hamiltonian approach, the logarithmic ap-
proximation requires that the infinitesimal change of the
effective interaction through one step of renormalization
is proportional to D−1 and is independent of the external
energy. In the lowest order the independence is approxi-
mately satisfied for the external energy much smaller than
D. To proceed similarly in the third order, we set εb = 0
in equation (9) and deal with the effective Hamiltonian:

HL
3 = V (H−1

0 QV )2 +
∑
c

V H−1
0 (εc −H0)−1QV |c〉〈c|V.

(14)

We refer to the literature [26] for detailed discussion of
the logarithmic approximation by a different formalism.

Before performing the third-order renormalization for
the Kondo model, it is instructive to consider first the
potential scattering from the impurity instead of the ex-
change scattering. If the particle-hole symmetry is present
in the conduction band, we can generate a particle-hole
conjugate diagram from any given diagram by reversing
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Fig. 2. Exchange scattering processes in the third order. The
projection operator Q requires one of two conduction-electron
states in the loop to have energies near the band edges.

the direction of all the conduction-electron lines. Then
the incoming conduction-electron line which corresponds
to the annihilation operator in the effective Hamiltonian
and the outgoing one for the creation operator are inter-
changed. The diagrams shown in Figure 1 represent the
simplest example of a pair of conjugate diagrams.

For the potential scattering the two diagrams in Fig-
ure 1 combine to zero. This is because an extra interchange
of the incoming and outgoing fermion lines are involved
in constructing the conjugate diagrams. To the contrary,
the non-commutativity of spin operators lead to nonzero
result from the sum of two diagrams in Figure 1.

In the third-order renormalization we first consider
such contributions that become dominant for large n.
These are diagrams which have a loop of conduction elec-
trons as shown in Figures 2 and 3, since each loop of
conduction electron lines acquires the factor n by sum-
ming over degenerate orbitals. The diagram shown in Fig-
ure 2 corresponds to the first term in equation (14). The
folded diagram shown in Figure 3 corresponds to the wave-
function renormalization in the Green function formalism.
With the notion of folded diagrams one can confirm that
the cancellation of potential scattering diagrams persists
at least to the third order. Namely the diagram shown in
Figure 3 has the same magnitude but has the sign opposite
to the one shown in Figure 2. Thus the two contributions
cancel each other for the case of potential scattering. In
both Figures 2 and 3, the energy denominators are ob-
tained by associating the excitation energy D with one of
two lines in the electron loop. The contribution is given
by ∫ 0

−D

dε′

(−D + ε′)2
+

∫ D

0

dε

(−D − ε)2
=

1

D
· (15)

The product of the spin operators takes the form
SαSβSγTr(sαsγ)sβ where the trace is over the spin
states of conduction-electrons. On the other hand the
folded diagram has the same energy denominators as
given by equation (15), and the spin part is given by
SαSγSβTr(sαsγ)sβ . Then contributions from the two di-
agrams combine to give∑

αβγ

Sα[Sβ, Sγ ]Tr(sαsγ)sβ = −
1

2
S · s, (16)

where we use the identity [Sα, Sβ ] = iεαβγS
γ with εαβγ

being the completely antisymmetric unit tensor.
As will be shown shortly, all non-loop diagrams in the

third order can be neglected for multiplicative renormal-

Fig. 3. The third-order folded diagram. The assignment of
energy denominators are explained in the text.

(a)
(b)

(c)
(d)

Fig. 4. Exchange scattering processes in the third order with-
out a conduction-electron loop. The projection operator Q re-
quires the double lines to have energies near the band edges.
There are two ways of associating the direction of arrows for
each diagram.

ization. Thus we recover the known result [2]

dg

dl
= −g2 +

n

2
g3, (17)

where g = Jρc. A trivial fixed point of the model is gc = 0
which, however, is unstable. Another fixed point of the
renormalization group is given by gc = 2/n which is small
in the case of large n. Thus the fixed point is within the
reach of the perturbative renormalization. Linearization
of the scaling equation around gc = 2/n shows that the
latter fixed point is stable.

Now we turn to non-loop diagrams in the third order.
Figure 4 shows such contributions with incoming and out-
going conduction electron lines deleted. These diagrams
belong to the group called the “parquet” in the Green
function theory [26]. The two ways of attaching directions
of arrows correspond to particle-hole conjugate diagrams.
It can be seen by direct calculation that the diagrams
shown in Figures 4a and 4b cancel each other not only
for the potential scattering but for the exchange scatter-
ing. This is because both have the same energy denomi-
nators and matrix elements but have different signs. On
the other hand, the diagram shown in Figures 4c and 4d
do not cancel among themselves. Moreover the diagram
(d) is logarithmically divergent. This divergence is, how-
ever, not related to the Kondo effect since the potential
scattering also gives this divergence.

Let us ask the nature of these contributions to the
effective interaction in the third order. They have a com-
mon feature of being constructed from the second-order
diagrams through replacement of a bare interaction ver-
tex by the second-order effective interaction. A diagram
with such property is called “reducible”. We note that the



Y. Kuramoto: Perturbative renormalization of multi-channel Kondo-type models 461

change of the cut-off influences the shift of the ground-
state energy, since the band-edge parts are no longer avail-
able to the effective Hamiltonian in the next step. To
reproduce the identical energy shift as that of the original
model, the effective Hamiltonian should contain a part
which compensates the missing energy shift associated
with the cut-off region. In the third order, this compensa-
tion comes from the expectation value of the reducible
part of the effective interaction. In fact a part of the
third-order energy shift comes from the diagram which is
obtained from Figure 4d by joining the outgoing
conduction-electron line with the incoming one. The re-
sultant energy shift corresponds to the expectation value
of the logarithmically divergent effective interaction. In a
similar manner expectation value of the diagram in Fig-
ure 4c also compensates another missing part of the energy
shift associated with the cut-off region.

Thus we conclude that in the third-order non-loop
diagrams do not contribute to the multiplicative renor-
malization. The effective interaction relevant to the renor-
malization group comes only from “irreducible diagrams”
which cannot be constructed from lower-order diagrams
through replacement of a bare interaction by a “vertex
part” in the terminology of the Green function formalism.
In the conventional renormalization theory, the number of
diagrams increases considerably as one goes higher order
in g. These terms have been discussed in the literature
[10,18] with mutually inconsistent results. The inconsis-
tency may partly be related to non-universal character in-
volved in higher-order renormalization. We plan detailed
account of O(g4) renormalization and comparison with
available exact results in a future publication. In this sec-
tion we reproduced the old result just for the purpose of
demonstrating the simplicity of the new formalism.

4 Renormalization of generalized Kondo-type
models

4.1 SU(2)× SU(2) Kondo model

The orbital dynamics in rare-earth systems such as
CexLa1−xB6 has remarkable entanglement of magnetic
and electric multipoles. The four-fold degenerate crystal
field level Γ8 is often treated in the framework of the SU(4)
symmetry. However, if one starts with the Anderson model
and renormalizes off the charge fluctuation, the multiplet
structure of 4f2 configurations act differently to the or-
bital and spin degrees of freedom [3]. Hence we consider
the following model [27].

H2×2 =
∑
klσ

ε kc
†
klσc klσ +Hex (18)

where l = 1, 2 denotes orbital index. The exchange part
Hex is given by

Hex = Jf† Sf · c† sc+Kf† Tf · c†τc

+ 4I
∑
µν

(f†SµT νf)(c†sµτνc) (19)

where S and s refer to spin matrices and T and τ do
the orbital ones. They are given explicitly by

f† Sf =
1

2

∑
lαβ

f†lα σαβflβ ,

f† Tf =
1

2

∑
lrα

f†lα σlrfrα, (20)

f†SµT νf =
1

4

∑
lr

∑
αβ

f†lασ
µ
αβσ

ν
lrfrβ (21)

for localized electrons. Similar notation has also been used
for conduction electrons. There is a constraint to suppress
the charge fluctuation of f electrons:∑

lα

f†lαflα = 1. (22)

In the special case of J = K = I, the present model re-
duces to the Coqblin-Schrieffer model. To see this we note
that the spin permutation operator Ps and the orbital one
Pl can be written as

Ps = 2f† Sf · c† sc+
1

2
, (23)

Pl = 2f† Tf · c†τc+
1

2
· (24)

Then the exchange part of the Coqblin-Schrieffer model is
represented by

If†c†(2 S · s +
1

2
)(2 T · τ +

1

2
)cf, (25)

in an abbreviated notation. This interaction reduces to
equation (19) with J = K = I.

Renormalization of the model proceeds in a similar
manner as that in the Kondo model. In order to simplify
the notation we use the convention that J,K and I denote
the effective interaction and the unit of energy is such that
ρc = 1. In the second order cross terms of J and K vanish
because the interactions with them commute each other.
This is not the case with the I term. In the third order the
relevant diagrams are again only those shown in Figures 2
and 3. The vertex parts there can be either J,K or I.
On the other hand the energy denominators are the same
as in the case of the Kondo model. The resultant scaling
equations are given by

∂J

∂l
= −(1− J)(J2 + 3I2), (26)

∂K

∂l
= −(1−K)(K2 + 3I2), (27)

∂I

∂l
= −2I(J +K) + I(K2 + J2 + 2I2). (28)

Let us discuss implication of the scaling equations. The
set of equations has six fixed points (i) -(iv) as follows:

(i) Jc = Kc = Ic = 0, (ii) Jc = Ic = 0,Kc = 1,
(iii) Jc = 1,Kc = Ic = 0, (iv) Jc = Kc = 1, Ic = 0,
(v) Jc = Kc = 1, Ic = 1, (vi) Jc = Kc = 1, Ic = −1.
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The fixed points (ii), (iii) and (iv) correspond to the non-
trivial fixed point known for the multi-channel Kondo
model [2] which are in fact unstable in the presence of
I. We discuss in more detail the stability of these fixed
points in the next section taking a generalized model. It
is known that the Coqblin-Schrieffer limit of the model
does not have the non-Fermi liquid. Then the fixed point
(v) with Ic = 1 should be an artifact of the third-order
scaling. The correct fixed point is at Ic = Jc = Kc = ∞
and gives the local Fermi liquid.

A remarkable property of the scaling given by equa-
tion (28) is the absence of the I2 term. The SU(2) sym-
metry plays a special role in this absence as will become
clear in the next section. Since the absence means that
the sign of I is irrelevant in the present system, it sug-
gests that the fixed point (vi) with I = −1 also flows to
infinity in the exact renormalization group. This flow has
been confirmed by the numerical renormalization group
method [28]. Namely the spectrum of the model with pos-
itive I is the same as that with negative I for the same
absolute value. The flow to the Fermi liquid is also con-
cluded by Pang [27], who started the renormalization from
I = 0.

4.2 SU(n)× SU(m) model

Motivated by the previous success of the large n theory
for the multi-channel Kondo model [2,3], we now gener-
alize the model of equation (18) to the SU(n)×SU(m)
symmetry with arbitrary n and m. Before presenting the
SU(n)×SU(m) model and its renormalization, we quote
necessary formula for the Lie algebra of the unitary group
SU(n). Let Xα (λ = 1, 2, ..., n2 − 1) represent the set
of generators of the SU(n) Lie algebra. The commutation
rule is given by

[Xα,Xβ] = ifαβγX
γ , (29)

where fαβγ is called the structure constant, and is com-
pletely antisymmetric against interchange of a pair of in-
dices. In the SU(2) case fαβγ reduces to the unit tensor
εαβγ of the third rank. Then we require the orthonormality

Tr(XαXβ) =
1

2
δαβ , (30)

which is the generalization of the relation obeyed by the
SU(2) spin matrices. The completeness relation is ex-
pressed as∑

α

(Xα)ab(X
α)cd =

1

2
(δadδbc −

1

n
δabδcd). (31)

In the special case of SU(2), the above relation is trans-
lated to that of spin permutation Ps of local and conduc-
tion electrons as given by equation (23).

By analogy with equation (19) we now introduce the
model with n-fold degenerate spin degrees of freedom,

and m-fold degenerate orbital degrees of freedom. The ex-
change part of the Hamiltonian is given by

Hex = J
∑
µ

(f†Sµf)(c†sµc) +K
∑
ν

(f†T νf)(c†τνc)

+ 4I
∑
µν

(f†SµT νf)(c†sµτνc) (32)

where

f†Sµf =
1

2

∑
lαβ

f†lα(Xµ)αβflβ ,

f†T νf =
1

2

∑
lrα

f†lα(Xν)lrfrα, (33)

f†SµT νf =
1

4

∑
lr

∑
αβ

f†lα(Xµ)αβ(Xν)lrfrβ (34)

for localized electrons. There is the constraint given by
equation (22) as in the case of the SU(2) × SU(2) system.

In the special case of I = mJ/2 = nK/2, the present
model reduces to the SU(n×m) Coqblin-Schrieffer model.
This becomes apparent when the product PsPl is written
in terms of generators of the Lie algebra. Namely we can
write Ps by using equation (31) as

Ps = 2
∑
µ

(f†Sµf)(c†sµc) +
1

n
, (35)

and similar generalization of equation (24).
The scaling equation up to the third order is given by

∂J

∂l
= −

n

2

(
1−

m

2
J
)[
J2 + 4

(
1−

1

m2

)
I2

]
, (36)

∂K

∂l
= −

m

2

(
1−

n

2
K
)[
K2 + 4

(
1−

1

n2

)
I2

]
, (37)

∂I

∂l
= −I (nJ +mK)−

(
mn−

2m

n
−

2n

m

)
I2

+
mn

4
I

[
J2 +K2 + 4

(
1−

1

n2
−

1

m2

)
I2

]
. (38)

We note that equation (38) has a finite I2 term in general.
The coefficient vanishes only if n = m = 2 with n and m
integers.

There are six fixed points of the scaling characterized
by equations (36 – 38). In correspondence to the SU(2) ×
SU(2) model, they are given by

(i) Jc = Kc = Ic = 0,

(ii) Jc = Ic = 0,Kc = 2/n,

(iii) Jc = 2/m,Kc = Ic = 0,

(iv) Jc = 2/m,Kc = 2/n, Ic = 0,

(v) Jc = 2/m,Kc = 2/n, Ic = Imn,

(vi) Jc = 2/m,Kc = 2/n, Ic = 1,
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Fig. 5. The renormalization flow of the SU(n)×SU(m) model
in the special case of n = m. The asterisk represents the (fic-
titious) fixed point given by the third-order scaling.

with

Imn ≡ −
m2 + n2

m2n2 −m2 − n2
,

the absolute magnitude of which is much smaller than
unity for m,n � 1. Except for the fixed point (vi), the
perturbative renormalization is well controlled because all
Jc,Kc and |Ic| are small as compared with unity. The case
(vi) belongs to the strong-coupling regime and the third-
order scaling is unreliable. In the Coqblin-Schrieffer limit,
this fixed point actually flows to the Fermi liquid one in
the exact renormalization group.

Let us study the stability of the fixed points. The triv-
ial fixed point (i) is unstable as in the case of the stan-
dard Kondo model. The fixed point (ii) constitute a saddle
point in the K−I plane; it attracts the renormalization
flow parallel to the K-axis, but repels it parallel to the I-
axis. Similar is the case (iii) with J and K interchanged.
The linearized scaling equations around the fixed points
(iv), (v) and (vi) all contain a part:

∂J

∂l
= nm

(
J −

2

m

)[
1

n2
+

(
1−

1

m2

)
I2
c

]
, (39)

∂K

∂l
= nm

(
K −

2

n

)[
1

m2
+

(
1−

1

n2

)
I2
c

]
. (40)

From this set of equations it turns out that the coefficient
of the linear term in the right hand side is positive. This
means that the fixed point attracts the renormalization
flow parallel to either J- or K-axes, independent of the
value of Ic. The flow parallel to the I-axis depends on Ic
as explained below.

At the fixed point (iv) with Ic = 0, the remaining
linearized scaling equation reads

∂I

∂l
= −

(m
n

+
n

m

)
I. (41)

The fixed point is unstable since the coefficient on the
right-hand side is negative.

On the other hand, the linearized scaling equation at
the fixed point (v) with Ic = Imn is given by

∂I

∂l
=

mn(m2 + n2)

m2n2 −m2 − n2
(I − Imn). (42)

Since the coefficient on the right-hand side is positive, the
fixed point is stable. The fixed point describes a non-
Fermi-liquid state. Within the third order scaling, this
fixed point connects smoothly, as the degeneracies n and
m decrease, to the one at J = K = −I = 1 which was
derived in Section 4.1. However, the special symmetry in
the case of SU(2)× SU(2) rejects this smooth connection
in the exact theory [28]. Thus we suggest that the non-
Fermi-liquid fixed point is stable except for the case of
SU(2)× SU(2). It should be an interesting future problem
to see how this strange behavior is related to the symme-
try.

Figure 5 shows qualitatively the flow diagram of the
renormalization group in the special case of n = m (� 1)
where the condition J = K, if present initially, continues
to hold in all steps of renormalization. The finite effective
interaction in the strong-coupling fixed point at Ic = 1
has been replaced by the correct flow toward the local
Fermi-liquid.

5 Summary and outlook

In this paper we have proposed a new method to per-
form renormalization for Kondo-type models. In contrast
to the standard approach which considers the vertex part,
our method is concerned with the effective Hamiltonian.
Our approach does not involve infinite-order summation,
but still employ the logarithmic approximation. In this
way the multiplicative property in the renormalization is
assumed.

In the SU(n)×SU(m) model nearly all the fixed points,
except a strong-coupling one with Ic = 1, are shown to
be within the reach of the perturbative renormalization.
One of the two non-Fermi-liquid fixed points, which has
Ic = Inm and is stable for large n and m, becomes unsta-
ble against the Fermi liquid one in the special case of the
SU(2)×SU(2) symmetry. This is due to the unexpected
symmetry between I and −I. Meaning of this hidden sym-
metry should be identified in a future study.

The other problem to be pursued further is the renor-
malization in still higher order. In particular compar-
ison with exact results obtained by the Bethe Ansatz
[29,30] and the conformal field theory [31] should be made.
The latter approach to the multi-channel Kondo model
derived the critical value of the exchange interaction as
Jc = 2/(m + 2), which tends for large m to the value
2/m obtained by the third-order renormalization. Since
the critical value itself is not a universal quantity, the
1/m expansion does not necessarily reproduce the value
Jc = 2/(m+2). However, observable quantities such as the
critical exponent must be independent of the method of
derivation. The Rayleigh-Schrödinger theory seems to be
the simplest approach to compute the higher-order beta
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function. The details of the higher-order renormalization
will be investigated in a separate paper.

Concerning the physical quantities in the intermediate
regime toward the fixed point, the spin susceptibility can
have different temperature dependence from that of the
orbital susceptibility. Since both spin and orbital fluctua-
tions contribute to the resistivity, conventional argument
to relate the transport and magnetic properties via the sin-
gle Kondo temperature has to be revised in the presence of
an orbital degeneracy. Recognition of this difference seems
to a clue to understanding the nature of the phase IV of
CexLa1−xB6. As another example of entangled spin and
orbital degrees of freedom we mention transition metal ox-
ides, especially manganites. For these systems we have to
modify the model to account for the situation where the
crystal field splitting is much larger than the spin-orbit
splitting. We are now analyzing the SU(2)×SU(2) model
quantitatively with use of the numerical renormalization
group [28].

I would thank Dr. H. Kusunose for useful conversation on the
model and the renormalization theory.
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